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Airship Hover Stabilization Using a Backstepping
Control Approach
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and
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The present paper introduces a novel approach for the airship hover stabilization problem. A synthetic modeling
of the airship dynamics is introduced using a quaternion formulation of the kinematics equations. Based on this
model, a backstepping design formulation is deduced for the aircraft hovering control. To deal with limitations
caused by reduced actuation, saturations are introduced in the control design, and the global asymptotic stability
of the system under saturation is demonstrated. The control objective is finally modified to cope with the strong
lateral underactuation. Simulation results are presented for the hover stabilization of an unmanned robotic airship,
with wind and turbulence conditions selected to demonstrate the behavior and robustness of the proposed solution.

Nomenclature
a, b ∈ R = scalar tuning parameters
b3, b4 = geometrical constants of the airship
C3 ∈ R3 × 3 = matrix representing cross product c×
c ∈ R3 = c.g. coordinates in the local frame
E ∈ R = East relative position of the airship
F ∈ R6 = vector of aerodynamic forces
Fu = [F1, F2, F3]T ∈ R3 = actuation input vector with force

components only (longitudinal,
lateral and vertical forces,
respectively)

f = [FT
u , TT

u ]T ∈ R6 = force actuation input vector
fs ∈ R6 = saturated force input vector
g ∈ R3 = gravity force vector given in Earth

frame
h ∈ R = airship altitude
In ∈ Rn × n = identity matrix of size n × n
Ja ∈ R3 × 3 = apparent inertia matrix of airship
K

�= −M−1Ω6M ∈ R6 × 6 = dynamic matrix associated with
dynamics representation

k1, k2, k3, k5 = second-order polynomials depending
on airspeed Vt

l4, l6 = geometrical constants of the airship
M ∈ R6 × 6 = full mass and inertia matrix of airship
Ma ∈ R3 × 3 = apparent mass matrix of airship
m ∈ R = airship scalar mass
mw ∈ R = weighting mass of airship, as the

difference between buoyancy mass
and airship scalar mass

N ∈ R = North relative position of the airship
p ∈ R3 = Cartesian coordinates of airship

position error given in Earth frame
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Q ∈ R4 × 4 = matrix relating the quaternions
with their derivatives and angular
velocities

q ∈ R4 = airship angular position error given
in quaternion description

S ∈ R3 × 3 = transformation matrix from Earth
frame to local frame

TD ∈ R = differential thrust of propellers
(difference between left and right
thrust)

Tu = [F4, F5, F6]T ∈ R3 = actuation input vector with torque
inputs only (roll, pitch, and yaw
torques, respectively)

TX ∈ R = total main propellers thrust
TY ∈ R = stern propeller lateral thrust
T

�= DC ∈ R7 × 6 = intermediate matrix for equation
development

T+ ∈ R6 × 7 = pseudoinverse of matrix T
U = [TX , δv, TD, TY , = actuators input vector
δa, δe, δr ]T ∈ R7

Vt ∈ R = true airspeed
v ∈ R3 = linear velocity vector in the local

frame
W, W2 ∈ R = Lyapunov functions
x = [vT ,ωT ]T ∈ R6 = full airship inertial velocity vector

given in local frame
xe ∈ R6 = velocity error, as the difference

between airship actual and
reference velocities

xw = [vT
w,ωT

w]T ∈ R6 = full wind velocity vector given in
local frame

α, β ∈ R = angle of attack and sideslip angle
δa, δe, δr ∈ R = aileron, elevator, and rudder inputs

from tail surfaces deflection
δv ∈ R = vectoring angle of main propellers
η= [pT , qT ]T ∈ R7 = airship position error given in

Earth frame
ηe ∈ R7 = estimated airship position error

between state and reference position,
considering wind direction

Λ∈ R7 × 7 = diagonal positive-definite matrix
used as tuning parameter

λ ∈ R = real scalar or matrix eigenvalue
ρ

�= √
(a/b) ∈ R = tuning parameter ratio

σ1, σ2 = saturation functions
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φ, θ, ψ ∈ R = Euler angles of the airship associated
with transformation matrix S

ψw ∈ R = wind heading angle
Ω3 ∈ R3 × 3 = matrix representing cross product

ω×
Ω4 ∈ R4 × 4 = antisymmetric matrix associated

with the angular velocity ω
ω= [ω1, ω2, ω3]T ∈ R3 = vector of airship angular speed given

in local frame

I. Introduction

T ECHNOLOGICAL advances and miniaturization in sensor,
onboard processing, and communication systems lead to an in-

crease in payload capacity and operational flexibility of unmanned
aerial vehicles (UAVs), widening their potential use as observation
and data-acquisition platforms in military, civil, and commercial
scenarios. Although UAVs presently have a relatively small shar-
ing in the aerospace market, their importance is expected to grow
enormously in the next decades. UAVs (or a coordinated group of
UAVS) are able to cover different application areas such as tactical
reconnaissance and operational support; landmine detection; border,
costal and remote regions patrol and monitoring; homeland security;
law enforcement; search and rescue; operation in hazard or disas-
ter zones; digital charting and mapping; mineral and archaeological
prospecting; land-use survey for diagnosis, planning and manage-
ment in rural and urban regions; agricultural and livestock studies,
crop yield prediction; fire detection and firefighting management;
global observing for environmental and climate research, including
atmospheric and air quality, marine, limnological and forests mon-
itoring and assessment; inspection of man-made structures such as
pipelines, power transmission lines, dams and roads; transportation
monitoring and control; communications and broadcast services;
and others. Detailed UAVs applications scenarios and roadmaps are
presented in Cox et al.1 and Cambone et al.2 from civil and military
perspectives, respectively. For several of the just-mentioned appli-
cations, the UAV must often be able to sustain a quasi-stationary
flight state (hover flight) over a certain target, independently of the
perturbations introduced by the atmospheric conditions.

Different kinds of control techniques have been recently applied
to solve the hovering problem of diverse types of UAVs. The au-
tomatic hovering of an outdoor autonomous airship using image-
based visual servoing in a proportional derivative (PD) error feed-
back scheme was presented in Azinheira et al.3 Linear robust multi-
variable control, fuzzy-logic control with evolutionary tuning, and
nonlinear tracking control were the three control methodologies
compared in Shim et al.4 for an helicopter autopilot design. Also
for hover control of an helicopter, Guo et al.5 introduced a prelim-
inary study on the use of neural adaptive control techniques, Yang
and Liu6 investigated the decoupling nonlinear H∞ control design
subject to model parameter uncertainties, and Mahony et al.7 pro-
posed a Lyapunov control design using backstepping techniques for
an unmanned helicopter. Also based in this approach, Metni et al.8

derived a visual servoing control law for UAV bridge inspection.
The present paper focus on a novel approach for the airship hover

stabilization problem. It introduces a synthetic modeling of the air-
ship dynamics, resulting in an original formulation of the system
kinematics/dynamics with an appropriate change of variables al-
lowing the application of backstepping techniques for the design of
the UAV hover control. This work is an evolution over the previous
linear-based controllers designed for the aerodynamic flight of the
AURORA airship, including successful reports of lateral and longi-
tudinal path tracking of the airship in real flight experiments.9,10

The backstepping approach11 is a Lyapunov-based control de-
sign technique, usually applied in the control of nonlinear systems.
By formulating a scalar positive function of the system states and
then choosing a control law to make this function decrease, we have
the guarantee that the nonlinear control system thus designed will
be asymptotically stable and still robust to some unmatched un-
certainties. Backstepping has been successfully applied in several
applications of flight control.12−14 Also addressing the issue of un-

deractuated systems, this control technique has been applied in Beji
et al.15 and Toussaint et al.16 The present paper describes the design
of a backstepping control strategy that stabilizes the hovering flight
of an airship, while being robust against perturbations (wind and
turbulence) and unmatched dynamics.

The saturation of the control signals is also considered in the de-
sign because at low airspeeds or when in hovering state the airship
is usually underactuated because of 1) reduced aerodynamic forces
demanding a superior action by the engines for position and atti-
tude control; 2) coupling of the main propellers that should provide
forward and vertical forces at the same time (through the vectoring
action of the thrusters); 3) absence of a lateral force actuator to op-
pose aerodynamic side forces; 4) level and rate saturation limits in
the actuators; and 5) dynamics of the actuators limiting their time
responses. All of these factors might lead to the saturation of the
control signals, which are usually bounded. To cope with limitations
caused by reduced actuation, we follow the idea of Teel,17 which
uses a nonlinear combination of saturation functions of linear feed-
backs that globally stabilizes a chain of integrators. The problem
of actuator limits is of fundamental interest for this kind of under-
actuated systems, making this a theoretical study closely related
to practical applications. A similar approach was also applied with
backstepping in Freeman and Praly18 so that the boundedness of the
control signals and its derivative were propagated through each step
of the recursive design, while Metni et al.8 follows the same idea
for an UAV with orientation limitation.

In addition, we propose a guidance strategy to deal with the airship
lateral underactuation in face of wind disturbances. A reference path
from the current state to the desired state is defined as to minimize
the need of lateral forces. Moreover, a yawing degree of freedom
is introduced in the control objective, allowing the airship to align
against the wind in the hovering condition. To evaluate the approach,
representative simulation tests were performed, using the fully six-
degrees-of-freedom nonlinear model-based simulation environment
developed in the Aurora Project.19 The simulations concern the hov-
ering stabilization of the airship under low and high wind conditions
and with possible inclusion of strong turbulence.

This paper is organized as follows. The airship modeling and
backstepping design are presented in Sec. II. The inclusion of satu-
rations in the control design is presented in Sec. III. The computation
of the real actuators input and the lateral underactuation problem are
considered in Sec. IV. Illustrative simulation results are presented
in Sec. V, and finally some conclusions are drawn in Sec. VI.

II. Model and Control Design
A. Airship Dynamics Without Aerodynamic Forces

The original airship dynamics without aerodynamic forces,20

considering the actuation as force and torque inputs f = (FT
u , TT

u )T ∈
R6, is{

Ma v̇ − mC3ω̇ = mΩ3C3ω − Ω3Mav + mwSg + Fu

mC3v̇ + Jaω̇ = −Ω3Jaω − mΩ3C3v + mC3Sg + Tu (1)

where v ∈ R3 and ω ∈ R3 are the linear and angular velocity vectors
in the local frame (centered at the airship center of volume), m is
the airship mass, mw is its weighting mass, (Ma ∈ R3 × 3, Ja ∈ R3 × 3)
are the apparent linear and rotational inertia matrices, S ∈ R3 × 3 is
the unitary transformation matrix from Earth frame to local frame,
and the synthetic matrix notation is used for the cross product:{

C3 = c×
Ω3 = ω×

with C3 ∈ R3 × 3,Ω3 ∈ R3 × 3 and using c ∈ R3 for the c.g. coordinates
in the local frame. Manipulating the equations yields[

Ma −mC3

mC3 Ja

][
v̇

ω̇

]
= −

[
Ω3Ma −mΩ3C3

mΩ3C3 Ω3Ja

][
v

ω

]

+
[

mwSg

mC3Sg

]
+

[
Fu

Tu

]
(2)
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or[
Ma −mC3

mC3 Ja

][
v̇

ω̇

]
= −

[
Ω3 0

0 Ω3

][
Ma −mC3

mC3 Ja

][
v

ω

]

+
[

mwI3

mC3

]
Sg +

[
Fu

Tu

]
(3)

or in concise form

Mẋ = −Ω6Mx + ESg + f (4)

where x = [vT ωT ]T ∈ R6 is the velocity state vector, f is the force
input, M ∈ R6 × 6 is a symmetric inertia matrix

Ω6
�=

[
Ω3 0

0 Ω3

]
∈ R6 × 6

and

E
�=

[
mwI3

mC3

]
∈ R6 × 3

If a modeling of the aerodynamic forces is to be considered, a new
term must be introduced. This term is a function of the difference
between the airship velocity and the wind velocity: F = F(x − xw).
The aerodynamic forces are however more usually approximated as
a function of the measured aerodynamic variables, with the airspeed
Vt and aerodynamic angles, the angle of attack α and the sideslip
angle β: F = F(Vt , α, β). Thus, the resulting model of the airship
dynamics is given by

Mẋ = −Ω6Mx + ESg + F + f (5)

B. Kinematics Modeling with Quaternions
Let the airship position error η= [pT qT ]T ∈ R7 be described by

its Cartesian coordinates p ∈ R3 in an Earth frame and by a quater-
nion description q ∈ R4 for its angular attitude.21 The kinematics
involves the transformation between velocity and position:⎧⎨⎩

ṗ = ST v

q̇ = 1
2
Q

[
0

ω

]
(6)

or

η̇ =
[

ST 0

0 1
2
Q

]
Cx = DCx = Tx (7)

where Q ∈ R4 × 4 is the unitary matrix relating the quaternions with
their derivatives and the angular rates

Q =

⎡⎢⎢⎣
q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤⎥⎥⎦ (8)

with

C
�=

⎡⎣ I3 03

01,3 01,3

03 I3

⎤⎦ ∈ R7 × 6, D
�=

[
ST 0

0 1
2
Q

]
∈ R7 × 7

and T ∈ R7 × 6 is defined as T
�= DC. The derivatives of the matrices

in D are

Ṡ = −Ω3S ⇒ ṠT = ST Ω3 (9)

and

Q̇ = 1
2
QΩ4 (10)

where Ω4 ∈ R4 × 4 is an antisymmetric matrix associated with the
angular velocity ω= [ω1, ω2, ω3]T :

Ω4 =

⎡⎢⎢⎣
0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0

⎤⎥⎥⎦ (11)

Defining

Ω7
�=

[
Ω3 0

0 1
2
Ω4

]
∈ R7 × 7

leads to

Ḋ =
[

ST Ω3 0

0 1
4
QΩ4

]
=

[
ST 0

0 1
2
Q

][
Ω3 0

0 1
2
Ω4

]
= DΩ7 (12)

The quaternion matrix Q is unitary (QT Q = I4), leading to another
property of the matrix T:

TT T = CT

[
ST 0

0 1
2
Q

]T [
ST 0

0 1
2
Q

]
C = CT

[
SST 0

0 1
4
QT Q

]
C

=
[

I3 0

0 1
4
I3

]
(13)

Finally, if we define the diagonal matrices Δ∈ R6 × 6 and Δ7 ∈ R7 × 7

as

Δ �=
[

I3 0

0 1
2
I3

]
= (TT T)

1
2 (14)

Δ7
�=

[
I3 0

0 1
2
I4

]
= (DT D)

1
2 (15)

then we get

TT Δ−2
7 T = Δ−2TT T = I6 (16)

yielding two possible formulations for the left pseudo-inverse of T:

T+ = TT Δ−2
7 = Δ−2TT (17)

C. Backstepping Controller Design
Gathering both the dynamic and cinematic equations leads to the

system dynamics:

ẋ = Kx + M−1(ESg + F + f ), η̇ = DCx

Ṡ = −Ω3S, Ḋ = DΩ7 (18)

where K
�= −M−1Ω6M ∈ R6 × 6 is linearly dependent of the angular

velocity ω, whereas M is constant or slowly varying with altitude
(because the inertia terms depend on the air density). The desired
stabilization corresponds to a control system objective where both
the velocity x and the position error η are regulated to zero.

Consider two intermediate output variables y1 ∈ R7 and y2 ∈ R6:{
y1 = aη + bTx

y2 = Δx (19)

with two positive scalars (a, b), and let us define the tentative
Lyapunov function

W = 1
2
yT

1 y1 + 1
2
yT

2 y2 (20)

Then the derivative is

Ẇ = yT
1 ẏ1 + yT

2 ẏ2 (21)
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where

ẏ1 = aη̇ + bṪx + bTẋ = aTx + bDΩ7Cx + bTẋ

ẏ2 = Δẋ (22)

leading to

yT
2 ẏ2 = (Δx)T Δẋ = xT Δ2ẋ = xT TT Tẋ (23)

and finally

Ẇ = (aη + bTx)T (aTx + bDΩ7Cx + bTẋ) + (Tx)T Tẋ (24)

Then

Ẇ = [aη + (b + 1/b)Tx]T (aTx + bDΩ7Cx + bTẋ)

− [(1/b)Tx]T (aTx + bDΩ7Cx) (25)

If the input is chosen so that

bTẋ = −Λ[aη + (b + 1/b)Tx] − aTx − bDΩ7Cx (26)

where Λ∈ R7 × 7 is a positive-definite matrix, then

Ẇ = −[aη + (b + 1/b)Tx]T Λ[aη + (b + 1/b)Tx]

− (1/b)(Tx)T (aTx + bDΩ7Cx) (27)

or

Ẇ = −[aη + (b + 1/b)Tx]T Λ[aη + (b + 1/b)Tx]

− (a/b)(Tx)T Tx − xT CT Δ2
7Ω7Cx (28)

Taking into account that Δ2
7Ω7 is antisymmetric, which eliminates

the last term, the derivative can finally be expressed as

Ẇ = −[aη + (b + 1/b)Tx]T Λ[aη + (b + 1/b)Tx]

− (a/b)(Tx)T Tx (29)

which states that this derivative is negative definite (Ẇ < 0) if Λ> 0
and a/b = ρ2 > 0, resulting then in a closed-loop system with global
asymptotic stability. Although the Lyapunov function (21) is not di-
rectly a function of the state variables, it is easily verified that through
the change of variables (19) the derivative of W only vanishes at the
origin for x = 0 and η= 0.

1. Closed-Loop Dynamics
The closed-loop dynamics is then given by the control law defi-

nition

Tẋ = (1/b){−aΛη − [aI7 + (b + 1/b)Λ]Tx − bDΩ7Cx} (30)

or {
Tẋ = −[

ρ2I7 + (1 + 1/b2)Λ
]
Tx − ρ2Λη − DΩ7Cx

η̇ = Tx (31)

or, introducing Λ1 ∈ R7 × 7, such that Λ2
1 = ρ2I7 + (1 + 1/b2)Λ,{

ẋ = −T+Λ2
1Tx − ρ2T+Λη − CT Ω7Cx

η̇ = Tx (32)

The design parameters (ρ, b,Λ), respectively two positive scalars
and a positive-definite matrix, are tuning parameters, used to adjust
the closed-loop characteristics, by instance in order to avoid exciting
the unmodeled dynamics.

2. Control Law
The control law is deduced from Eqs. (18) and (32)

Kx + M−1(ESg + F + f ) = −T+Λ2
1Tx − ρ2T+Λη − CT Ω7Cx

(33)
leading to

f = M
(−T+Λ2

1Tx−ρ2T+Λη−CT Ω7Cx−Kx
)−ESg−F (34)

or

f = −MT+(
ρ2Λη+Λ2

1Tx
)−M(CT Ω7C +K)x−ESg−F (35)

To cope with limitations caused by the model approximations or to
reduced actuation, it is interesting or even necessary to investigate
the possibility of introducing saturations into the control design,
which shall be considered in the next section.

III. Control Saturation
To include the input limitations into the design phase, the control

law (35) was adapted with the inclusion of saturations in the feed-
back law according to the definitions introduced in the Appendix.
Assuming that matrix Λ is diagonal, Eq. (35) can be written as

f = −MAT (Ax + Γx + Bη) − ESg − F (36)

where

A
�= Δ−1

7 Λ1T ∈ R7 × 6, B
�= ρ2Δ−1

7 Λ−1
1 Λ ∈ R7 × 7

Γ �= Λ−1
1 Δ−1

7 T
(
CT Ω7C + K

) ∈ R7 × 6 (37)

Let us now introduce saturation functionsσ1 andσ2 (the appendix),
respectively, on Bη and Ax,

fs = −MATσ2[Ax + Γx + σ1[Bη]] − ESg − F (38)

Looking for the stability of the velocity state, let us define
W2 = 1

2
xT x. Considering the saturated force input (38), the velocity

derivative (18) is now

ẋ = Kx + M−1(ESg + F + fs) (39)

or

ẋ = Kx − ATσ2[Ax + Γx + σ1[Bη]] (40)

leading to

Ẇ2 = xT Kx − xT ATσ2[Ax + Γx + σ1[Bη]] (41)

The first term is zero because K is antisymmetric and, introducing
z1

�= Bη ∈ R7, z2
�= Ax ∈ R7 and v2

�=Γx ∈ R7, the equation can be
written as

Ẇ2 = −zT
2 σ2[z2 + v2 + σ1[z1]] (42)

If the saturations are chosen so that R1 < 1
2
r2, then, using Theorem 2

(the appendix) and its corollary, it can be deduced that for |z2| > 1
2
r2,

Ẇ2 < 0, showing that W2 is a Lyapunov function. Therefore, after a
finite time T2 the variable z2 will enter the linear zone of its saturation
and remain in it. After time T2, the force input is then

fs = −MAT (Ax + Γx + σ1[Bη]) − ESg − F (43)

and the velocity derivative is

ẋ = Kx − AT (Ax + Γx + σ1[Bη]) (44)

= −T+[
ρ2Tx + (1 + 1/b2)ΛTx + DΩ7Cx + σ1[ρ2Λη]

]
(45)

leading to the saturated version of Eq. (26):

bTẋ = −Λ[σ1[aη] + (b + 1/b)Tx] − aTx − bDΩ7Cx (46)
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Recalling now the overall function W = 1
2
yT

1 y1 + 1
2
yT

2 y2, we can
rewrite Eq. (29) with the saturation as

Ẇ = −[aη + (b + 1/b)Tx]T Λ[σ[aη] + (b + 1/b)Tx]

− (a/b)(Tx)T Tx (47)

or even

Ẇ = −(X2z2 + X1z1)
T (X2z2 + X1σ1[z1]) − ρ2(Tx)T (Tx) (48)

with z1 = Bη ∈ R7, z2 = Ax ∈ R7 as previously defined, and
X1 ∈ R7 × 7 and X2 ∈ R7 × 7 as

X2
�= b(1 + 1/b2)Δ7Λ−1

1 Λ
1
2

= b(1 + 1/b2)Δ7

[
ρ2Λ−1 + (1 + 1/b2)I7

]− 1
2

X1
�= bΔ7Λ1Λ− 1

2 = bΔ7

[
ρ2Λ−1 + (1 + 1/b2)I7

] 1
2 (49)

From the preceding formulas, and considering that all of the design
parameters are positive, it can be verified that both X1 and X2 are
positive diagonal matrices and that their minimum and maximum
eigenvalues verify

λmax(X2) < b(1 + 1/b2)
1
2 < λmin(X1) (50)

which leads to

|z2| < |σ1[z1]| ⇒ |X2z2| < |X1σ1[z1]| (51)

Then, using theorem 3 (the appendix) shows that if |σ1[z1]| ≥ r1,
Ẇ < 0, and otherwise, σ1[z1] = z1, and clearly we also have Ẇ < 0,
finally showing the exponential stability of the controlled system.

IV. Using the Airship Actuators
A. Airship Actuators

The available actuators of any airship are not likely to provide a
full controllability as the preceding control design would request.
To a higher extent than for other air vehicles, the airship is an under-
actuated system, and the control design must be carefully adapted,
as well as the allowable requirements. In the sequel, the case of the
Aurora AS800B airship will be considered. The control actuators
of the airship can be split into two sets (Fig. 1):

1) Force inputs are available from the vectored two main pro-
pellers, on each side of the gondola (vectoring ranging from −30
to +120 deg). The propellers provide a complementary lift to op-
pose the weighting mass, as well as a forward thrust controlling
the longitudinal speed; when a differential input is added between
the two propellers (meaning different rotations for the left and right
engines), they also provide torque to control the rolling motion near
hover; finally, a stern lateral thruster might be necessary to provide
yaw control at low airspeeds, although it has not been used in the
Aurora airship standard configuration.

Fig. 1 Airship actuators.

2) Surface deflections of the tail (in the range of −25 to +25 deg)
in the presence of a minimum airspeed provide torque inputs mostly
for the control of the pitching and yawing motions. However, when
the air is perfectly still and no wind is available, the hover control
is reduced to the use of the force inputs only.

Thus, the real airship actuators input is given by [TX , δv , TD , TY ,
δa , δe, δr ]T , where TX is the total main propellers thrust; δv is the
vectoring angle; TD is the difference between right and left thrust;
TY is the stern propeller lateral thrust, and δa, δe, δr are the tail
surfaces deflections, corresponding to aileron, elevator and rudder,
respectively. The aileron input δa is generated through the opposite
deflection of each of the fins yielding a rolling moment.

B. Control Allocation
1. Force Inputs

The relation between force actuators and force inputs will then
be as follows:

1) Near hover, the two main propellers correspond to three inputs
(TX , δv, TD)—total thrust, vectoring angle, and differential thrust—
providing longitudinal and vertical force and pitching and rolling
torques.

2) If available, the tail lateral thruster adds one input TY , providing
a side force and a yawing motion.

These force actuators are slightly influenced by the airspeed but
can be considered as independent in a first step.

2. Surface Deflections
The action from the surface deflections is, on the contrary, a func-

tion of the dynamic pressure and varies as the square of the airspeed
Vt , according to the aerodynamic characteristics of the airship21.
The surface deflections correspond to the three standard inputs of
aileron, elevator, and rudder deflections, represented respectively
by (δa, δe, δr ). As just listed, with seven inputs to control six forces
(three forces and three torques), the airship might seem overactu-
ated, but several limitations severely reduce the controllability:

1) The stern thruster only provides a yawing torque, and its lateral
force is negligible, so that no actuator is really available to oppose
the aerodynamic side force.

2) The main propellers provide four coupled force components
with only three inputs.

3) The tail surfaces depend on the airspeed, and their authority
vanishes in the no-wind case, leaving the airship to be controlled by
the force inputs only.

4) All of the actuators have level and rate saturation limits, so that
might not be avoided.

5) The force actuators in particular have their own dynamics, with
limited response times, that must be taken into account.

To reduce the influence of these limitations, the solution adopted
in the control design was to add the tuning parameters (ρ, b,Λ), so
as to decrease the closed-loop frequency, searching for a slower so-
lution, that would be more robust to the unmodeled and approximate
dynamics, as well as input saturations.

3. Airship Inputs
The relation from actuators to force inputs can then be estab-

lished in an approximated approach neglecting the actuators dy-
namics, using the airspeed measurement and resolving the possible
redundancies according to the usual operation of the airship:

U = U( f , Vt ) (52)

where U = [TX , δv, TD, TY , δa, δe, δr ]T ∈ R7 is the real actuators in-
put. (The airship aerodynamic angles also have their effect, but they
can be neglected in a first step, assuming small incidence angles.) In
the present case, the input U is computed as solution of the following
system:

f1 = TX cos(δv) + k1δe, f2 = −k2δr

f3 = −TX sin(δv) + k3δe, f4 = k2l4δa + b4 sin(δv)TD

f5 = TX b3 cos(δv) + k5δe, f6 = k2l6δr + b4 cos(δv)TD
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where (b j , l j ) are geometrical constants of the airship and k j (Vt )
are second-order polynomials expressing the airspeed depending
authority of the tail actuators.

C. Dealing with the Lateral Underactuation
For a hovering objective with respect to the ground or a ground

target, the wind disturbance appears both as a positive factor, which
will help to control the airship thanks to the increased tail authority;
and a drawback, producing a mostly horizontal force, that needs to
be balanced by an airship actuator, and this is only possible using
the longitudinal forces and aligning the airship to reduce the lateral
actuation. As a consequence, and in order to avoid the saturation
occurrences resulting from the reduced lateral controllability, along
with the definition of suitable saturation limits, it is necessary to cor-
rect the control objective, and in the presence of wind, it is necessary
to 1) allow a yawing degree of freedom, so that the airship can align
against the wind and the lateral force input can vanish in stationary
conditions; and 2) define a reference path from the current state to
the desired state that will reduce the need of lateral forces to a low
and acceptable value.

The feedback law (38) expressed earlier must be adapted to the
tracking case

fs = −MATσ2[(A + Γ)xe + σ1[Bηe]] − ESg − F (53)

where the feedback is now in terms of position ηe and velocity xe
errors, between state and a reference position and velocity path. State
error computation is done as follows: 1) wind heading estimation
ψw , using the measurement of the airship position as well as airspeed
and sideslip angle; 2) compute the relative Cartesian position error
after a rotation with angle ψw around target position; 3) reference
shaping, computing a yaw reference for first-order lateral regulation,
and then a yaw-rate reference in agreement with the yaw reference;
and 4) compute quaternion error using computed yaw reference.
Comparing to the control solution previously presented, it shall be
assumed that the reference path varies slowly and that its derivative
can be neglected when compared to the state derivative. (This also
means that the wind mean value is assumed as slowly varying.)

V. Simulation Results
To evaluate the approach, repetitive simulation tests were per-

formed, using the fully nonlinear platform developed in the Aurora
project10,19 to simulate the motion of an airship prototype weight-
ing 33 kg and with a volume of 30 m3 (Fig. 2). The simulation
results presented here concern a hovering stabilization of the air-
ship at (N = 0 m, E = 0 m) and constant altitude and from an initial
horizontal error (Ni = −25 m, Ei = 5 m), where N and E stand for
the North and East relative position. For illustrative purposes, the
attitude of the airship is also set out of equilibrium, with 10 deg in
all Euler angles. Two extreme cases are considered, allowing the
enhancement of the effect of the underactuation aspect: 1) a fully
actuated airship (case FA), where the airship is assumed to accept
as input the six-dimensional force vector as generated by the initial

Fig. 2 AURORA AS800B airship.

control law [Eq. (35)]; and 2) real actuators (case RA), where the
actual nonlinear model of the airship is used, with the real actuator
models as control inputs.

A. Nominal Wind
The nominal case corresponds to a hovering stabilization in a

constant wind blowing from North at 3 m/s. The position vari-
ables are presented in Fig. 3, with the horizontal North–East
path on top, then the Cartesian coordinates (North, East, and al-
titude) and the Euler angles. (The attitude is here presented in
terms of the Euler angles, which are more meaningful and intu-
itive than the quaternions.) The results with full actuation are on
the left, and the real actuators’ case is on the right. For the latter
case, the saturations used correspond to the following force max-
ima: [F1, F2, F3, F4, F5, F6] = [107, 13, 40, 27, 267, 27](N ). The
first clear difference is in the horizontal path, where the FA case
is nearly a straight line, whereas for the RA case the reference shap-
ing leads to a priority to the alignment of the airship against the
wind, and then reaches the desired position. The saturations associ-
ated with the RA case are also quite obvious in the North and East
time curves, namely, a saturated rate on the North curve and some
oscillation on the East one, while the FA curves exhibit a first-order
response. The result is a slightly higher settling time, with around
15 s for the FA case and 20 s for the RA case. The Euler angles look
more dissimilar, slow and smooth in the FA case, more oscillating
but faster in the RA case: this is clearly again the result of the ref-
erence shaping, demanding a faster angular stabilization in order to
reduce the need for lateral force inputs.

The lateral and yaw correction is also coupled with the rolling
motion, and this coupling is increased by the airship aerodynamics.
To evaluate the effect of this aerodynamic disturbance, the aerody-
namic variables are shown in Fig. 4, with the FA case on the left and
the RA case on the right. The airspeed Vt is presented on the top
curve, followed by the angle of attack α and sideslip angle β. In the
FA case, the airspeed climbs up to 8 m/s, before settling to its nom-
inal value of 3 m/s: with 8 m/s the aerodynamic forces can hardly
be neglected, and the airship would fly without any vectoring. In
the RA case, the airspeed only goes up to 4.5 m/s, remaining there
during most of the correction. The aerodynamic angles also show
smaller values in the RA case. Figure 5 presents the force inputs
generated by the control law, with the FA case on the left and the
RA on the right. The saturation levels are clearly visible in the RA
case, reducing the initial peaks, that exhibit very high values in the
FA case; a saturated zone is then shown by the RA case from 7 to
18 s (saturation attained in F2 is propagated to some of the other
forces), followed by the final stabilization. The actuator inputs in
the RA case are presented in Fig. 6, with the longitudinal inputs on
the left and the lateral inputs on the right. After an initial correction,
mostly present in the longitudinal actuators, the lateral correction is
naturally mostly controlled by the lateral actuators.

B. Small Wind Example
As it was already explained, when the aerodynamic forces are

reduced, with a smaller mean wind speed by instance, the control
surfaces have less authority, which namely makes the lateral control
of the airship quite a difficult issue. The behavior of the control
system in such a case is presented in Fig. 7, corresponding to the
nominal given conditions except for a wind speed reduced to only
1 m/s. When compared to the nominal case above in the 3-m/s
wind speed case, the lateral alignment is much slower, whereas the
longitudinal control is mostly similar. The difference between the
lateral and longitudinal behavior is clearly shown in the horizontal
path, with a final approach from the south with 3 m/s, whereas the
approach is from east in the 1-m/s one. The reason for the lateral
higher sensitivity to the wind intensity is that the longitudinal motion
is mostly controlled by the force inputs, whereas the lateral one
is mostly depending on the rudder deflection input to control the
yaw angle and the lateral position. The airspeed climbs up only to
2.2 m/s, but most of the lateral correction is performed with only
1-m/s airspeed, which explains the higher settling time.
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Fig. 3 Nominal case, position variables: N − E path, N, E, h, φ, θ, ψ: left, FA case; and right, RA case.

Fig. 4 Aerodynamic variables Vt, α, β: left, FA case; and right, RA case.
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Fig. 5 Force demands: left, FA case; and right, RA case.

Fig. 6 Real actuator case inputs.

C. Nominal Wind Plus Turbulence
To evaluate the airship control behavior in a more realistic exam-

ple, a simulation was run with the nominal conditions, but with a
turbulent wind corresponding to a mean windspeed of 3 m/s from
North and a continuous atmospheric turbulence with 3-m/s inten-
sity. (In the Aurora AS800B simulation platform, the continuous
atmospheric turbulence is modelled with a Dryden model.) This is
an intermediate condition with a relatively high turbulence, with
wind heading changes reaching 40 deg, but one can consider the
airship should be able to stabilize a hover in these conditions, for
ground or target observation. As to make a better analysis of the
turbulence input response, the simulation time was increased to
150 s. The results from this simulation in the RA case are pre-
sented in Fig. 8. Comparing with the nominal curves (Figs. 3, 4,
and 6), the horizontal path allows us to verify that the initial align-
ment is very similar, and then, when the airship reaches the target

point, the wind input results in a mostly lateral oscillation around
2 m wide. The influence of the turbulence disturbance is obviously
particularly visible for the aerodynamic variables, with airspeed os-
cillations above 1 m/s, the aerodynamic angles going up to almost
15 deg. The longitudinal control is however quite good, suffering
very little from the disturbance. The lateral control is more dif-
ficult, which is simply explained by the high aerodynamic lateral
forces caused by the wind inputs, being the airship clearly underactu-
ated in this axis. The overall stabilization objective is still achieved,
and namely the roll and pitch angles are very well regulated. In
terms of control inputs, the rudder deflection δr and the differential
thrust TD are the more active inputs, necessary to oppose the lateral
forces and rolling torques.

A quantitative measurement of the control performance can be
obtained from the rms measurement of the last 100 s by instance
(approximately equivalent to the stabilized region), leading to the
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Fig. 7 Stabilization in low wind in the RA case.

Fig. 8 Turbulent wind case.



912 AZINHEIRA, MOUTINHO, AND DE PAIVA

Fig. 9 Simulation in 8-m/s wind and turbulence.

Table 1 RMS values for hovering in 3- or 8-m/s wind and turbulence
simulation (last 100 s)

Mean wind speed N , cm E , cm h, cm φ, deg θ , deg ψ , deg Vt , m/s

3 m/s 20 114 5.8 0.9 0.7 8.5 0.23
8 m/s 41 95 45 4.1 0.9 2.3 0.63

results in Table 1. The values are in perfect agreement with the
previous comments, and they confirm that the hovering stabilization
is well achieved, despite the high turbulent disturbance. Namely the
roll and pitch attitude angles are quite stable.

D. Increased Wind and Turbulence
Finally, to demonstrate the system behavior when the aerody-

namic forces are significant and the tail authority is higher, a
simulation was run with a mean wind of 8 m/s and a turbu-
lent component with an intensity of 3 m/s. This simulation corre-
sponds to a more difficult hover case because of the higher wind
and increased forces to stabilize. At this airspeed, the increase
in aerodynamics allows for higher forces and moments from the
tail fins, such that the force maxima can now be considered as
[F1, F2, F3, F4, F5, F6] = [107, 29, 40, 59, 586, 59](N ). In Fig. 9
some illustrative results of a 150-s simulation are presented, with
the horizontal path, aerodynamic variables, and the control inputs.
Comparing with the nominal wind case, one can easily note the
noisy signals with a higher frequency. In this case, the longitudinal
control seems more difficult, and the vectoring angle is clearly hes-
itating between the usual hover position, which would be vertical
(90 deg) in smaller winds, and the cruising flight case, where the
propellers would normally not be vectored. The interpretation of
this case very obviously shows that for such an airspeed the airship
should be controlled using the aerodynamic lift instead of the vec-
toring, and thus the reference pitch angle should no longer be zero.

Keeping the hovering reference model implies a higher use of the
propellers, when the elevators could be much more efficient.

Trying to quantify the quality of the hover stabilization in this
illustrative case, the rms values of the last 100 s are here again
computed and are also presented in Table 1. Comparing with the
previous 3-m/s mean wind speed case, we verify that the lateral po-
sition control is better. On the other hand, the longitudinal variables
(N , h) have now magnitude values similar to the lateral one. The
pitch angle is however still very well stabilized.

VI. Conclusions
This paper introduces a novel approach for the problem of stabi-

lizing an airship in hover. The main results of the work are outlined
as 1) proposition of an original formulation of an airship kinematics/
dynamics with an appropriate change of variable allowing the appli-
cation of backstepping techniques; 2) design of a backstepping con-
trol strategy that stabilizes the hovering flight of the airship, which is
robust against perturbations (wind and turbulence) and against un-
matched dynamics; and 3) proposition of a theoretical study closely
related to practical applications, as the actuators saturation is con-
sidered in the design. The backstepping approach used relies in a
nonlinear combination of saturation functions of linear feedbacks
ensuring global stabilization under saturation. The problem of actu-
ator limits is of fundamental interest for this kind of underactuated
systems; 4) and finally, the proposition of a guidance strategy to deal
with the problem of the airship lateral underactuation. The strong
lateral underactuation of the airship is dealt with using a modi-
fied control objective in order to make the airship follow a given
reference path from the current state to the desired state reducing
the need of lateral forces and also allowing the airship to align it-
self against the wind in the hovering condition. Illustrative results
are presented for the hovering stabilization of the Aurora project
airship, showing the behavior and robustness of the proposed solu-
tion in a wide range of wind and turbulence conditions. Extensive
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simulations for the refinement and full validation of the hovering
backstepping approach are being carried out in the AURORA devel-
opment environment, prior to the implementation in the real airship
for experimental purposes.

Appendix: Saturation Definition and Properties
The definitions presented hereafter are inspired on the definitions

introduced by Teel17 and permit the extension of the stability of the
control solution to the case of reduced actuation.

Definition 1: As a particular case and extension of the linear sat-
uration definition proposed by Teel,17 let us introduce the element-
wise nondecreasing saturation function σ : Rn → Rn , defined by a
vector m of n positive values mi , with mi > r > 0, and such that

∀z ∈ Rn, σ[z] = Σz (A1)

where the diagonal matrix Σ is defined by

|zi | < mi ⇒ �i = 1, |zi | ≥ mi ⇒ �i = mi/|zi | (A2)

Properties: It can easily be verified that the definition yields the
following properties17:⎧⎨⎩

∀z ∈ Rn; zTσ[z] > 0

∀z ∈ Rn; |σ[z]| ≤ R
|z| < r ⇒ σ[z] = z (A3)

where |z| =√
(zT z) is the norm of vector z as defined in Rn and

R2 = ∑n
i = 1

m2
i .

Theorem 1: If zT v = 0, then

zTσ[z + v] > 0 (A4)

Proof: Because v is orthogonal to z, it can be expressed as v =Ωz,
where Ω is antisymmetric, and we then have

zTσ[z + v] = zT Σ(z + Ωz) = zT Σz + zT ΣΩz

Considering the last term, because it is a scalar we have

zT ΣΩz = (zT ΣΩz)T = −zT ΩΣz

and then

zT Σ(z + Ωz) = 1
2
zT [Σ(I + Ω) + (I − Ω)Σ]z

or

zT Σ(z + Ωz) = zT Xz

where X is a symmetric matrix with a positive diagonal, which leads
to the presented result. �

Theorem 2: If two saturations σ1 and σ2 are defined, such that
R1 < 1

2
r2, then

∀(z1, z2) ∈ Rn, |z2| > 1
2
r2 ⇒ zT

2 σ2[z2 + σ1[z1]] > 0 (A5)

Proof: Because |z2| > 1
2
r2 and |σ1[z1]| ≤ R1 < 1

2
r2, and considering

the orthogonal projection of the saturated vector on z2, one can write

σ1[z1] = λ1z2 + v1

where |λ1| < 1, zT
2 v1 = 0, and |λ1z2 + v1| < 1

2
r2, leading to

|z2 + λ1z2 + v1| < r2

and then

zT
2 σ2[z2 + σ1[z1]] = zT

2 σ2[(1 + λ1)z2 + v1]

= zT
2 Σ2[(1 + λ1)z2 + v1]

= (1 + λ1)zT
2 Σ2z2 > 0 �

Corollary 1: If |z2| > 1
2
r2 and |σ1[z]| < 1

2
r2, and zT

2 v2 = 0, then

zT
2 σ2[z2 + v2 + σ1[z1]] > 0 (A6)

Proof: If

σ1[z1] = λ1z2 + v1

then

zT
2 σ2[z2 + v2 + σ1[z1]] = zT

2 σ2[(1 + λ1)z2 + v2 + v1]

which can be written as

(1 + λ1)zT
2 σ2[z2 + v]

which, using theorem 1 and |λ1| < 1, leads to the desired result. �

Theorem 3: If λ1 > 1, then for all |z2| < |z1|
(z2 + z1)

T (z2 + λ1z1) > 0 (A7)

Proof: Because |z2| < |z1|, the orthogonal projection of z2 on z1

gives

z2 = λ2z1 + v2

where |λ2| < 1 and vT
2 z1 = 0, leading to

(z2 + z1)
T (z2 + λ1z1) = [(λ2 + λ1)z1 + v2]T [(λ2 + 1)z1 + v2]

= (λ2 + λ1)(λ2 + 1)zT
1 z1 + vT

2 v2 > 0 �
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